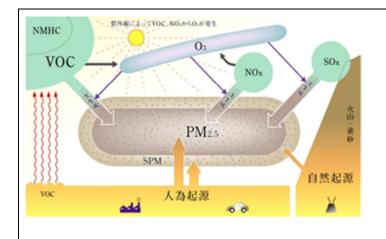
PM2.5 注意喚起情報の提供について

福島県では、「注意喚起」情報提供について以下に基づき注意喚起情報の提供を行います。

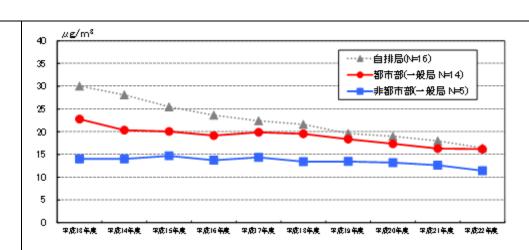
(1) 県

- O 国の暫定的な指針値である日平均値70μg/m'とします。
- 〇 国の考え方に準じ、午前中についての日平均値 $70 \mu g/m$ 超過の判断は午前5時から午前7時までの1時間値の平均値が $85 \mu g/m$ が超過とします。
 - 午後からについての日平均値 $70 \mu g/m$ 超過の判断は午前5時から正午までの1時間値の平均値が $80 \mu g/m$ 超過とします。
- 「注意喚起」情報提供は、一般の人が屋外で活動する機会が増える日中の行動の参考となるよう、多くの人が活動を始める午前中の 早めの時間帯及び午後の早めの時間帯に行います。
- 県民への速やかな情報提供のため、土日休日を問いません。
- 「注意喚起」情報提供時の広報内容を広く周知するため、多くの関係機関に情報提供の連絡を行います。
- 〇 関東甲信越で「注意喚起」があった場合、監視を強化します。

(2) 町


〇 石川町は、福島県からの情報提供を受けて、県が発する情報提供を町防災無線により注意喚起情報の補完を行い、周知の徹底に努めます。

1. 微小粒子状物質 (PM2.5) とは 【環境省 HP より】


- 大気中に浮遊している $2.5\,\mu$ m($1\,\mu$ m は $1\,m$ m の千分の 1)以下の小さな粒子のことで、従来から環境基準を定めて対策を進めてきた 浮遊粒子状物質(SPM: $10\,\mu$ m 以下の粒子)よりも小さな粒子です。
- PM2.5 は非常に小さいため(髪の毛の太さの 1/30 程度)、肺の奥深くまで入りやすく、呼吸系への影響に加え、循環器系への影響が 心配されています。

- 粒子状物質には、物の燃焼などによって直接排出されるものと、硫黄酸化物(SOx)、窒素酸化物(NOx)、揮発性有機化合物(VOC) 等のガス状大気汚染物質が、主として環境大気中での化学反応により粒子化したものとがあります。発生源としては、ボイラー、焼却炉などのばい煙を発生する施設、コークス炉、鉱物の堆積場等の粉じんを発生する施設、自動車、船舶、航空機等、人為起源のもの、さらには、土壌、海洋、火山等の自然起源のものもあります。
- これまで取り組んできた大気汚染防止法に基づく工場・事業場等のばい煙発生施設の規制や自動車排出ガス規制などにより、SPM と PM2.5 の年間の平均的な濃度は減少傾向にあります。

PM2.5 の生成メカニズム

PM2.5 質量濃度の推移(平成 13~22 年度)

(出典:微小粒子状物質等曝露影響実測調查)

2. 環境基準について

- 環境基本法第 16 条第 1 項に基づく人の健康の適切な保護を図るために維持されることが望ましい水準として以下のとおり環境基準を定めています。
 - 1年平均値 $15\mu g/m^3$ 以下 かつ 1日平均値 $35\mu g/m^3$ 以下

(平成21年9月設定)

この環境基準値は、呼吸器疾患、循環器疾患及び肺がんに関する様々な国内外の疫学知見を基に、専門委員会において検討したものです。

3. 注意喚起のための暫定的な指針

- 平成25年2月13日に大気汚染及び健康影響の専門家による「PM2.5に関する専門家会合」の第1回を開催しました。その後、平成25年2月27日に開催された第3回専門家会合において専門家会合報告が取りまとめられ、注意喚起のための暫定的な指針が示されました。
- その後、平成 25 年前半の実績等を踏まえて、平成 25 年 11 月 13 日に開催された第 5 回専門家会合において、運用に関する改善策が 示されました。

注意喚起のための暫定的な指針				
レベル	暫定的な指針となる値	行動のめやす	注意喚起の判断に用いる値 ※3	
			午前中の早めの 時間帯での判断	午後からの活動に 備えた判断
	日平均値(μg/m³)		5時~7時	5 時~12時
			1時間値(μg/m³)	1時間値(μg/m³)
п	70超	不要不急の外出や屋外での長時間の激しい運動をできるだけ減らす。 (高感受性者※2においては、体調に応じて、より慎重に行動することが望まれる。)	85超	80超
【 (環境基準)	70以下 35以下※1	特に行動を制約する必要はない が、高感受性者は、健康への影響が みられることがあるため、体調の変 化に注意する。	85以下	80以下

- ※1 環境基準は環境基本法第16条第1項に基づく人の健康を保護する上で維持されることが望ましい基準 PM2.5に係る環境基準の短期基準は日平均値35µg/m³であり、日平均値の年間98パーセンタイル値で評価
- ※2 高感受性者は、呼吸器系や循環器系疾患のある者、小児、高齢者等
- ※3 暫定的な指針となる値である日平均値を超えるか否かについて判断するための値
- 環境省では、注意喚起のための暫定的な指針が示されたことを受けて、PM2.5 に関する情報を分かりやすく提供するため、「微小粒子状物質(PM2.5)に関するよくある質問(Q&A)」を作成しました。今後も随時情報を追加していきます。
 - 微小粒子状物質(PM2.5)に関するよくある質問(Q&A) [PDF 176KB]

微小粒子状物質 (PM 2.5) に関するよくある質問 (Q & A)

Q. 微小粒子状物質 (PM 2.5) とは、どのようなものですか。

A. 微小粒子状物質(PM 2.5)とは、大気中に浮遊する小さな粒子のうち、粒子の大きさが 2.5μm(1μm=1mm の千分の 1)以下の非常に小さな粒子のことです。その成分には、炭素成分、硝酸塩、硫酸塩、アンモニウム塩のほか、ケイ素、ナトリウム、アルミニウムなどの無機元素などが含まれます。また、さまざまな粒径のものが含まれており、地域や季節、気象条件などによって組成も変動します。

Q. 微小粒子状物質 (PM 2.5) は、どのようにして発生しますか。

A. 微小粒子状物質(PM 2.5)には、物の燃焼などによって直接排出されるもの(一次生成)と、環境大気中での化学反応により生成されたもの(二次生成)とがあります。 一次生成粒子の発生源としては、ボイラーや焼却炉などばい煙を発生する施設、コークス炉や鉱物堆積場など粉じん(細かいちり)を発生する施設、自動車、船舶、航空機などのほか、土壌、海洋、火山など自然由来のものや越境汚染による影響もあります。また家庭内でも、喫煙や調理、ストーブなどから発生します。

二次生成粒子は、火力発電所、工場・事業所、自動車、船舶、航空機、家庭などの燃料燃焼によって排出される硫黄酸化物(SOx)や窒素酸化物(NOx)、燃料燃焼施設のほかに溶剤・塗料の使用時や石油取扱施設からの蒸発、森林などから排出される揮発性有機化合物(VOC)等のガス状物質が、大気中で光やオゾンと反応して生成されます。

Q. どのような健康影響がありますか。

A. 微小粒子状物質 (PM 2.5) は粒子の大きさが非常に小さい (髪の毛の太さの 30 分の 1) ため、肺の奥深くまで入りやすく、喘息や気管支炎などの呼吸器系疾患への影響のほか、肺がんのリスクの上昇や循環器系への影響も懸念されています。

Q. どの程度の濃度になると健康影響が生じますか。

A. 微小粒子状物質 (PM 2.5) の環境基準 (人の健康を保護する上で維持されることが望ましい基準) として「1年平均値が 15μg/m 3 以下であり、かつ、1日平均値が 35μg/m 3 以下であること」と定められています。環境省が平成 25 年2月に設置した「微小粒子状物質 (PM 2.5) に関する専門家会合」では、健康影響が出現する可能性が高くなると予測される濃度水準として、注意喚起のための暫定的な指針となる値を1日平均値 70μg/m 3 と定めています。但し、呼吸器系や循環器系の疾患のある者、小児や高齢者などでは、個人差が大きいと考えられており、これより低い濃度でも健康影響が生じる可能性は否定できないとされています。この暫定的な指針となる値については、今後新たな知見やデータの蓄積等を踏まえ、必要に応じて、見直しを行うこととしています。

Q. 平成 25 年1月の中国の大気汚染の際には、日本で濃度上昇がみられたのですか。

A. 日本国内では、西日本の広い地域で環境基準を超える濃度が一時的に観測されましたが、全国の一般測定局における環境基準の超過率について、平成 25 年 1 月のデータを平成 24 年や平成 23 年の同時期と比較すると、高い傾向は認められましたが、大きく上回るものではありませんでした。なお、これまで取り組んできた大気汚染防止法に基づく工場・事業場等のばい煙発生施設の規制や自動車排出ガス規制などにより、微小粒子状物質(PM 2.5)の年間の平均的な濃度は減少傾向にあります。

Q. 中国の大気汚染による日本への影響は、どの程度ですか。

A. 平成 25 年1月の日本における一時的な PM 2.5 濃度の上昇については、西日本の広い地域で環境基準(日平均値)を超える PM 2.5 が観測されたこと、都市汚染の影響の少ない九州西端の離島にある国立環境研究所の観測所でも粒子状物質の濃度上昇が 観測され、その成分に硫酸イオンが多く含まれていたこと、国立環境研究所の推計(シミュレーション)結果によると北東アジアにおける広域的な PM 2.5 による大気汚染の一部が日本にも及んでいること、などから総合的に判断すると、大陸からの越境大気汚染の影響があったもの と考えられます。一方、PM 2.5 は通常でも我が国の大気中で観測されており、濃度上昇は都市汚染による影響も同時にあったと考えられることから、平成 25 年1月の事象は大陸からの越境汚染と都市汚染の影響が組み合わさっている可能性が高いとされています。越境汚染による影響の程度は地域や期間によって異なるため、その程度を定量的に明らかにするには詳細な解析が必要です。

Q. 季節によって PM 2.5 濃度は変動しますか。

A. 例年、冬季から春季にかけては PM 2.5 濃度の変動が大きく、上昇する傾向がみられ、夏季から秋季にかけては比較的安定した濃度が 観測されています。

Q. 「暫定的な指針となる値」には、どのような意味がありますか。

A. 環境省が平成 25 年2月に設置した「微小粒子状物質(PM 2.5)に関する専門家会合」において設定された暫定的な値であり、国内外の疫学研究結果等に基づいて注意喚起のための目安として設定されたものです。

Q. 「暫定的な指針となる値」を超えた場合は、注意報や警報が発令されますか。

A. 専門家会合において、暫定的な指針となる値としての 1 日平均値 $70\mu g/m$ 3 に対応する 1 時間値 $85\mu g/m$ 3 $(5\sim7$ 時の 1 時間値の平均値)、1 時間値 $80\mu g/m$ 3 $(5\sim12$ 時の 1 時間値の平均値)を超えた場合は、都道府県等が注意喚起を行うことを推奨しています。ただし、この値は光化学オキシダントの場合のような法令に基づく措置ではないので、注意報や警報は発令されません。

Q. 「暫定的な指針となる値」を超えた場合は、どのようなことに注意すればよいですか。

A. PM 2.5 濃度が暫定的な指針となる値を超えた場合には、その吸入を減らすため、屋外での長時間の激しい運動や外出をできるだけ減らすことは有効です。その際、屋内においても換気や窓の開閉を必要最小限にするなどにより、外気の屋内への侵入をできるだけ少なくする必要があります。特に呼吸器系や循環器系の疾患を有する者、小児、高齢者などは、より影響を受けやすい可能性があるので、普段から健康管理を心がけるとともに、体調の変化に注意することが大切です。また喫煙により、室内の PM 2.5 濃度が大きく上昇することが知られています。

Q. 「暫定的な指針となる値」を超えた場合は、運動会等の屋外での行事は中止する必要がありますか。

A. PM 2.5 濃度が注意喚起のための暫定的な指針となる値を大きく超えない限り、運動会等の屋外での行事は中止する必要はないと考えられます。これは、「長時間の激しい運動でない限り換気量は大きく増加せず健康影響の可能性も高くないこと、及び当該行事を中止することによる社会的影響が大きい」ことを考慮したものです。但し、呼吸器系・循環器系疾患を有する者、小児などは、健康な成人に比べ影響を受けやすく個人差も大きいと考えられるため、普段から健康管理に努めるとともに、PM 2.5 濃度が高い場合には、個人の体調に応じてより慎重に行動することが望まれます。また、運動会等の主催者は参加者に事故等が起こった場合に備えて、養護教諭等の配置や緊急に受診できる医療機関を確保するなどの配慮が必要と考えます。こうした配慮は特別なものではなく、PM 2.5 濃度の高低に関わらず、このような行事を開催する場合、主催者が通常取るべき措置と考えます。

なお、「大きく超える場合」の具体的な値については、専門家会合においても「現段階では高濃度域での健康影響に関する十分な科学的 知見がないため、具体的な値を示すことは困難」という結論でしたが、米国の空気質指数(AQI)を参考にすると、日平均値が 140~150μg /m 3 を超える場合、すべての人は長時間の激しい運動や屋外活動を中止すべきとのアドバイスがなされています。

Q. 「屋外での長時間の激しい運動」とは、どのような運動を指しているのですか。

A. 一概に明示することは困難ですが、マラソン大会のように呼吸器系への過度の負担 長時間続くような運動が想定されます。 運動会等の屋外活動は、長時間の激しい運動にはあたらないと考えています。

Q. 窓の開閉で PM 2.5 の影響はどれほど違うのですか。

A. 窓の開閉による屋内濃度への影響を定量的に示した資料はありませんが、窓を開けておくと屋内の PM 2.5 濃度は屋外の PM 2.5 濃度と同等の値になると推測されることから、窓の開閉や換気は必要最小限にすることにより、外気の屋内への侵入をできるだけ少なくし、その吸入量を減らすことは有効な対策と考えています。

Q. マスクの着用は有効ですか。

- A. 微小粒子状物質 (PM 2.5) に対して、一般用マスク (不織布マスク等) の着用により、ある程度の効果は期待できますが、PM 2.5 の吸入防止効果はその性能によって異なると考えられます。また、医療用や産業用の高性能な防じんマスク (N95 ※1 や DS1 ※2 以上の規格のもの) は、微粒子の捕集効率の高いフィルターを使っており、PM 2.5 の吸入を減らす効果があります。但し、マスクを着用する場合には顔の大きさに合ったものを、空気が漏れないように着用しなければ、十分な効果が期待できません。一方、着用すると少し息苦しい感じがあるので、長時間の使用には向いていません。
 - ※1 米国の規格に基づき NIOSH(米国労働安全衛生研究所)が認定したマスク。
 - ※2 労働安全衛生法に基づく国家検定に合格したマスク。DS1 や DS2 などの種類がある。

Q. 空気清浄機は PM 2.5 の除去に有効ですか。

A. PM 2.5 に対する空気清浄機の除去効果については、フィルターの有無や性能など機種によって異なると考えられます。一部製品については、各メーカーにおいて性能試験により一定の有効性が確認されているとのことですが、個別の製品の効果に関する詳細については、製品表示や販売店・メーカーに確認する必要があります。

Q. 農産物の安全性に影響はないのですか。

A. PM 2.5 が農産物に付着することは想定されますが、懸念されている PM 2.5 の影響は主に呼吸器系へのものであり、摂食による健康影響はこれまで報告されていません。

Q. PM 2.5 と黄砂の関係はどのようですか。

A. 黄砂は、東アジアの砂漠から強風により大気中に舞い上がった砂(土壌・鉱物粒子)が浮遊しつつ降下する現象です。日本へ飛来する 粒子の大きさは $4\,\mu\,\mathrm{m}$ 付近のものが主ですが、一部 $2.5\,\mu\,\mathrm{m}$ 以下の微小な粒子も含まれているため、PM 2.5 の測定値も上昇することがあります。

また、黄砂が輸送される過程で、大気汚染物質の発生が多い地域を通過する場合、これらの物質とともに日本へ飛来することがあります。 なお、明確な結論は得られていませんが、黄砂による健康影響については、喘息等の症状が悪化する等の報告もありますので、黄砂の飛来に伴って PM 2.5 濃度も上昇している時には注意して下さい。

Q. PM 2.5 と花粉の関係はどのようですか。

A. 花粉の大きさは 30 μm 程度で、PM 2.5 よりもかなり大きく、アレルギー疾患の一つである花粉症の原因となることが知られています。 花粉と PM 2.5 の複合影響については、現時点で明確な知見は得られていませんが、過去の動物実験では PM 2.5 の一部であるディーゼル排気粒子が鼻アレルギー及びアレルギー性結膜炎様病態を悪化させるとの報告もありますので、PM 2.5 濃度が高いときには注意して下さい。

Q. PM 2.5 と喫煙(たばこの煙) はどのような関係がありますか。

- A. たばこの煙には多くの有害な微小な粒子が含まれており、全席喫煙の飲食店や喫煙室内の PM 2.5 濃度は数百 μg/m 3 に及ぶこともあることが報告されています。
- Q. 微小粒子状物質 (PM 2.5) に関する情報は、どうすれば入手できますか。
 - A. 環境省ホームページの「微小粒子状物質(PM 2.5)に関する情報サイト」(http://www.env.go.jp/air/osen/pm/info.html)のほか、全国の自治体の関連情報サイトや国立環境研究所のサイトなどがあります。
- Q. 現在の濃度に関する情報は、どうすれば入手できますか。
 - A. 大気汚染防止法に基づき、国や地方自治体が全国 645 カ所(平成 25 年 3 月末現在)で微小粒子状物質(PM 2.5)の常時監視(モニタリング)を実施しています。PM 2.5 を始めとする大気汚染物質濃度の現在の状況については、環境省の大気汚染物質広域監視システム【そらまめ君】(http://soramame.taiki.go.jp/) や各自治体の PM 2.5 関連情報サイトなどで速報値が公表されています。

関連情報

【環境省】

- ・微小粒子状物質(PM2.5)に関する情報
 - http://www.env.go.jp/air/osen/pm/info.html
- ・環境省大気汚染物質広域監視システム(そらまめ君)

http://soramame.taiki.go.jp/

【福島県】

- ・微小粒子状物質(PM2.5)濃度の測定結果について
 - http://www.cms.pref.fukushima.jp/pcp_portal/PortalServlet?DISPLAY_ID=DIRECT&NEXT_DISPLAY_ID=U000004&CONTENTS_ID=35157
- ・微小粒子状物質 (PM2.5) 濃度の測定結果について
 - http://www.pref.fukushima.jp/kankyou/taiki/hp/sokutei2_24.html
- 現在の大気汚染状況 (大気汚染常時監視測定局 時報 (速報値))
 - http://www.pref.fukushima.jp/kankyou/taiki/hp/taikihour/taikihourindex.html